期刊简介

本刊是由中国科学院主管,经国家科委、新闻出版署审核批准的理、工、医相结合的国家级学术刊物,杂志创刊于1985年,现为月刊(内文160页,约35万字)。杂志主要刊出放射学(包括CT、MRI、普通X线)、超声医学、介入治疗学、影像技术学、超声工程学、电子内镜学、核医学等学科的最新研究成果。本刊主要特点是:①综合影像;②信息量大;③理、工、医相结合;④传播及时。该刊是基础科研人员和临床医务人员学术交流的园地,是广大医生晋升中高级职称的重要依据,也是中国科学院唯一的医学工程技术与临床相结合的刊物。

首页>中国医学影像技术杂志
  • 杂志名称:中国医学影像技术杂志
  • 主管单位:中国科学院
  • 主办单位:中国科学院声学研究所
  • 国际刊号:1003-3289
  • 国内刊号:11-1881/R
  • 出版周期:月刊
期刊荣誉:《CAJ-CD》规范执行优秀奖期刊期刊收录:JST 日本科学技术振兴机构数据库(日), 上海图书馆馆藏, 国家图书馆馆藏, CSCD 中国科学引文数据库来源期刊(含扩展版), 医学文摘, 哥白尼索引(波兰), 文摘与引文数据库, SA 科学文摘(英), 北大核心期刊(中国人文社会科学核心期刊), 万方收录(中), 文摘杂志, 知网收录(中), 统计源核心期刊(中国科技论文核心期刊), 维普收录(中)
中国医学影像技术杂志2007年第10期

基于ICA的脑电信号去噪方法研究与应用

谢松云;张振中;张伟平;赵海涛

关键词:独立分量分析, 脑电信号, 信号分离, 去噪
摘要:目的 在脑电信号的采集和处理过程中,受到各种各样噪声的影响,为有效地提取和分析检测信号中的有用信息,提出采用独立分量分析(independent component analysis, ICA)的方法对脑电信号进行去噪处理.方法 工频噪声、心电伪迹以及脑电波源信号之间的关系是统计独立的,满足ICA方法的分离条件,可将脑电信号去噪问题转化为独立分量分离问题,通过构造与工频噪声频率相同的正交正弦和余弦信号作为对工频噪声的参考信号,将构造的两个参考信号和心电信号以及含噪脑电信号作为ICA中混合矩阵的输入信号,采用收敛速度快的FastICA算法把脑电信号中的工频噪声和心电伪迹作为独立信号分离出去,得到去噪后的脑电信号.结果 通过ICA方法对噪声进行分离后,脑电信号中的两种噪声基本被消除,并且可很好地保留脑电信号有用成分.结论 将ICA的方法用于去除脑电信号中的多种噪声成分是有效的、可行的.